Note: There are 8 questions with total 126 points in this exam.

1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $f(x, y)=\left(e^{x} \cos y, e^{x} \sin y\right)$.
(a) (8 points) For each $(x, y) \in \mathbb{R}^{2}$, show that there is an open neighborhood U of (x, y) such that f has a (local) C^{1} inverse defined on $f(U)$. [You may want to check that a proper theorem is applicable here].

Solution: Since f is smooth, and, for each $(x, y) \in \mathbb{R}^{2}$, we have $\operatorname{det} D f=\operatorname{det}\left(\begin{array}{cc}e^{x} \cos y & -e^{x} \sin y \\ e^{x} \sin y & e^{x} \cos y\end{array}\right)$ $=e^{2 x} \neq 0$. By the Inverse Function Theorem, there is an open neighborhood U of (x, y) on which f has a (local) C^{1} inverse defined on $f(U)$.
(b) (4 points) Does f have a global inverse defined on the \mathbb{R}^{2} ? Give explanation to your answer.

Solution: Since $f(x, y+2 k \pi)=f(x, y)$ for any $(x, y) \in \mathbb{R}^{2}$ and any $k \in \mathbb{Z}, f$ is not a one-to-one function on \mathbb{R}^{2} and it does not have a global inverse on \mathbb{R}^{2}.
2. (10 points) Let $F(x, y, z)=(x y+2 y z-3 x z, x y z+x-y-1)$ for $x, y, z \in \mathbb{R}$. Find the differential $D F$ at $(x, y, z)=(1,1,1)$, and determine whether it is possible to represent the set $S=\{(x, y, z) \mid F(x, y, z)=$ $(0,0)\}$ as a smooth curve parametrized by z, i.e. whether it is possible to solve for x, y in terms of z, near the point $(x, y, z)=(1,1,1)$.

Solution: Direct computation gives that $\left.D F\right|_{(1,1,1)}=\left(\begin{array}{ccc}y-3 z & x+2 y & 2 y-3 x \\ y z+1 & x z-1 & x y\end{array}\right)_{(1,1,1)}=\left(\begin{array}{ccc}-2 & 3 & -1 \\ 2 & 0 & 1\end{array}\right)$. Since $\operatorname{det}\left(\begin{array}{cc}-2 & 3 \\ 2 & 0\end{array}\right)=-6 \neq 0, S$ can be represented as a smooth curve, parametrized by z, near the point $(x, y, z)=(1,1,1)$ by the Implicit Function Theorem.
3. (a) (10 points) Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $F(x, y, z)=\left(x+y-z, x-y+z, x^{2}+y^{2}+z^{2}-2 y z\right)$. Determine the rank of $D F$ on \mathbb{R}^{3} and determine whether the image set $F\left(\mathbb{R}^{3}\right)$ is locally a smooth surface or a smooth curve.

Solution: Direct computation gives $D F=\left(\begin{array}{ccc}1 & 1 & -1 \\ 1 & -1 & 1 \\ 2 x & 2 y-2 z & 2 z-2 y\end{array}\right)$.
Since $\operatorname{det}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)=-2 \neq 0$ and $\left(\begin{array}{c}-1 \\ 1 \\ 2 z-2 y\end{array}\right)=-\left(\begin{array}{c}1 \\ -1 \\ 2 y-2 z\end{array}\right), D F$ has constant rank 2 on \mathbb{R}^{3}, and the set $F\left(\mathbb{R}^{3}\right)$ is locally a smooth surface.
(b) (10 points) Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $F(x, y, z)=\left(x y+z, x^{2} y^{2}+2 x y z+z^{2}, 2-x y-z\right)$. Determine the rank of $D F$ on \mathbb{R}^{3} and determine whether the image set $F\left(\mathbb{R}^{3}\right)$ is locally a smooth surface or a smooth curve.

Solution: Direct computation gives that $D F=\left(\begin{array}{ccc}y & x & 1 \\ 2 y(x y+z) & 2 x(x y+z) & 2(x y+z) \\ -y & -x & -1\end{array}\right)$.
Since $(2 y(x y+z), 2 x(x y+z), 2(x y+z))=2(x y+z)(y, x, 1)$ and $(-y,-x,-1)=-(y, x, 1), D F$ has constant rank 1 on \mathbb{R}^{3}, and the set $F\left(\mathbb{R}^{3}\right)$ is locally a smooth curve.
4. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be defined by $f(x, y, z)=(x+y+z, x-y-2 x z)$, so that $f(0,0,0)=(0,0)$ and $D f(0,0,0)=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 0\end{array}\right)$.
(a) (10 points) Show that we can solve for $(x, y)=g(z)$, i.e. solve for x, y in terms of z,

Solution: In $D f(0,0,0)$, since $\operatorname{det}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)=-2 \neq 0$, we can solve for $(x, y)=g(z)$, by the Implicit Function Theorem, i.e. we can solve for x, y in terms of z.
(b) (10 points) Show that $D g(0)=\binom{-\frac{1}{2}}{-\frac{1}{2}}$.

Solution: By differentiating the components of f with respect to z, we get
$f_{x} \frac{\partial x}{\partial z}+f_{y} \frac{\partial y}{\partial z}+\left.f_{z}\right|_{\text {at }(0,0,0)}=\binom{1}{1} \frac{\partial x}{\partial z}+\binom{1}{-1} \frac{\partial y}{\partial z}+\binom{1}{0}=\binom{0}{0}$
which is equivalent to that
$\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)\binom{\frac{\partial x}{\partial z}}{\frac{\partial y}{\partial z}}=\binom{-1}{0} \Rightarrow D g(0)=\binom{\frac{\partial x}{\partial z}}{\frac{\partial y}{\partial z}}_{\text {at } z=0}=-\frac{1}{2}\left(\begin{array}{cc}-1 & -1 \\ -1 & 1\end{array}\right)\binom{-1}{0}=\binom{-\frac{1}{2}}{-\frac{1}{2}}$
5. (a) (6 points) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{\frac{1}{3}}$. For each $c>0$, prove that f is Lipschitz on $[c, \infty)$.

Solution: For any $x, y \in[c, \infty)$, by the Mean Value Theorem, we have
$|f(x)-f(y)|=\left|f^{\prime}(z)(x-y)\right|=\left|\frac{1}{3 z^{2 / 3}}(x-y)\right|$ for some point z lying between $x, y \in[c, \infty)$
$\Rightarrow|f(x)-f(y)|=\left|\frac{1}{3 z^{2 / 3}}(x-y)\right| \leq \frac{1}{3 c^{2 / 3}}|x-y|$ holds for any $x, y \in[c, \infty)$.
This proves that f is Lipschitz on $[c, \infty)$.
(b) (6 points) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}$. Prove that f is Not Lipschitz on $[1, \infty)$.

Solution: For any $x, y \in[1, \infty)$, by the Mean Value Theorem, we have
$|f(x)-f(y)|=|2 z(x-y)|$ for some point z lying between x and y.
By letting x and y go to ∞, we note that z will go to ∞.
Thus, there does not exist a fixed number A such that $|f(x)-f(y)| \leq A|x-y|$ holds for all $x, y \in[1, \infty)$. Hence, f is not Lipschitz on $[1, \infty)$.
(c) (6 points) Let f, g be Lipschitz maps defined on $D \subset \mathbb{R}^{p}$ with ranges in \mathbb{R}^{q}. Prove that $f+g$ is Lipschitz on D.

Solution: Since f, g are Lipschitz on D, there exist constant $A, B \geq 0$ such that $\|f(x)-f(y)\| \leq A\|x-y\|$ and $\|g(x)-g(y)\| \leq B\|x-y\|$ hold for any $x, y \in D$.
This implies that $\|(f+g)(x)-(f+g)(y) \mid \leq\| f(x)-f(y)\|+\| g(x)-g(y)\|\leq(A+B)\| x-y \|$ holds for any $x, y \in D$.
Hence, $f+g$ is Lipschitz on D.
(d) (6 points) Give an example of Lipschitz functions $f, g:[1, \infty) \rightarrow \mathbb{R}$ and that the product $f g$ is Not Lipschitz on $[1, \infty)$.

Solution: Let $f(x)=g(x)=x$ for each $x \in[1, \infty)$. Then, f and g are Lipschitz (with LIpschitz constant 1), but $(f g)(x)=x^{2}$ is not Lipschitz by part (b).
6. (a) (8 points) Let $\left\{f_{n}\right\}$ be a sequence of functions defined by $f_{n}(x)=\frac{x}{n}$ for each $x \in \mathbb{R}$. Show, without using Arzelà-Ascoli's theorem, that f_{n} converges uniformly on any closed interval $[a, b] \subset \mathbb{R}$ while the convergence in Not uniform on \mathbb{R}.

Solution: For each $x \in \mathbb{R}$, we have $\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{x}{n}=0=f(x)$, and $\lim _{n \rightarrow \infty} \sup _{[a, b]}\left|f_{n}(x)-f(x)\right|=\lim _{n \rightarrow \infty} \sup _{[a, b]} \frac{|x|}{n}=\lim _{n \rightarrow \infty} \max \left\{\frac{|a|}{n}, \frac{|b|}{n}\right\}=0$.
Hence, f_{n} converges uniformly on any closed interval $[a, b] \subset \mathbb{R}$.

Now, since $\lim _{n \rightarrow \infty} \sup _{\mathbb{R}}\left|f_{n}(x)-f(x)\right|=\lim _{n \rightarrow \infty} \sup _{\mathbb{R}} \frac{|x|}{n} \geq \lim _{n \rightarrow \infty} \frac{|n|}{n}=1 \neq 0$, the convergence is not uniform on \mathbb{R}.
(b) (8 points) Let f_{n} be defined on the interval $[0,1]$ by the formula

$$
f_{n}(x)= \begin{cases}0, & \text { if } x \in\left[0,1-\frac{1}{n}\right], \\ n x-(n-1), & \text { if } x \in\left[1-\frac{1}{n}, 1\right]\end{cases}
$$

Show that $\lim _{n \rightarrow \infty} f_{n}(x)$ exists on $[0,1]$, and, without using Arzelà-Ascoli's theorem, show that this convergence is Not uniform on $[0,1]$.

Solution: For each $x \in[0,1)$, we have $x \in\left[0,1-\frac{1}{n}\right)$ if $n>\frac{1}{1-x}$.
This implies that $f_{n}(x)=0$ for all $n>\frac{1}{1-x}$ and for all $x \in[0,1)$.
Thus, we have $\lim _{n \rightarrow \infty} f_{n}(x)=0$ for each $x \in[0,1)$.
At $x=1$, since $f_{n}(1)=1$ for all $n \in \mathbb{N}$, we have $\lim _{n \rightarrow \infty} f_{n}(1)=1$.
Hence, we have $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)=\left\{\begin{array}{ll}0 & \text { if } x \in[0,1) \\ 1 & \text { if } x=1\end{array}\right.$,
and, since $\lim _{n \rightarrow \infty} \sup _{[0,1]}\left|f_{n}(x)-f(x)\right|=\lim _{n \rightarrow \infty} \sup _{[0,1]}(n x-(n-1))=\lim _{n \rightarrow \infty} 1=1 \neq 0$,
the convergence is not uniform on $[0,1]$.
7. Let $\mathscr{F}=\left\{\left.f_{n}(x)=\frac{x^{n}}{n} \right\rvert\, x \in[0,1], n=1,2, \ldots\right\}$.
(a) (4 points) Show that \mathscr{F} is uniformly bounded on $[0,1]$.

Solution: Since $\left|f_{n}(x)\right| \leq \frac{1}{n} \leq 1$, for each $f_{n} \in \mathscr{F}$ and for each $x \in[0,1]$, the set \mathscr{F} is uniformly bounded on $[0,1]$.
(b) (8 points) Show, without using the arzelà-Ascoli's theorem, that \mathscr{F} is uniformly equicontinuous on $[0,1]$.

Solution: For each $f_{n} \in \mathscr{F}$ and for each $x \in(0,1)$, since $\left|f_{n}^{\prime}(x)\right|=|x|^{n-1} \leq 1$, by the Mean Value
Theorem, we have $(*) \cdots\left|f_{n}(x)-f_{n}(y)\right| \leq 1 \cdot|x-y|$ for any $x, y \in[0,1]$ and for all $n \in \mathbb{N}$.
This implies that \mathscr{F} is uniformly equicontinuous on $[0,1]$.
(For each $\epsilon>0$, we choose $\delta=\epsilon$ such that if $x, y \in[0,1]$ and $|x-y|<\delta$, then the inequality (*) implies that $\left|f_{n}(x)-f_{n}(y)\right|<|x-y|<\delta=\epsilon$ for each $f_{n} \in \mathscr{F}$.)
8. (12 points) Let $\left\{f_{n}\right\}$ be a sequence of continuous functions with domain $D \subset \mathbb{R}^{p}$ and range in \mathbb{R}^{q} and let this sequence converge uniformly on D to a function f. Prove that f is continuous on D.

Solution: Given $\epsilon>0$, since f_{n} converges uniformly to f on D, there exists an $M \in \mathbb{N}$ such that $\left\|f_{n}(x)-f(x)\right\|<\frac{\epsilon}{3}$ for each $x \in D$.
At any point $x \in D$, since f_{M} is continuous at x, there exists a $\delta>0$ such that if $y \in D$ and $\|x-y\|<\delta$ then $\left\|f_{M}(x)-f_{M}(y)\right\|<\frac{\epsilon}{3}$.
Thus, we have
$\|f(x)-f(y)\|=\left\|f(x)-f_{M}(x)+f_{M}(x)-f_{M}(y)+f_{M}(y)-f(y)\right\|$
$\leq\left\|f(x)-f_{M}(x)\right\|+\left\|f_{M}(x)-f_{M}(y)\right\|+\left\|f_{M}(y)-f(y)\right\|<\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon$.
This implies that f is continuous at x.
Since x is an arbitrarily chosen point from D, f is continuous on D.

