
Advanced Calculus Midterm Exam April 27, 2011

Note: There are 8 questions with total 126 points in this exam.

1. Let f : R2 → R2 be defined by f(x, y) = (ex cos y, ex sin y).

(a) (8 points) For each (x, y) ∈ R2, show that there is an open neighborhood U of (x, y) such that f has a
(local) C1 inverse defined on f(U). [You may want to check that a proper theorem is applicable here].

Solution: Since f is smooth, and, for each (x, y) ∈ R2, we have det Df = det

(
ex cos y −ex sin y
ex sin y ex cos y

)

= e2x 6= 0. By the Inverse Function Theorem, there is an open neighborhood U of (x, y) on which f
has a (local) C1 inverse defined on f(U).

(b) (4 points) Does f have a global inverse defined on the R2? Give explanation to your answer.

Solution: Since f(x, y + 2kπ) = f(x, y) for any (x, y) ∈ R2 and any k ∈ Z, f is not a one-to-one
function on R2 and it does not have a global inverse on R2.

2. (10 points) Let F (x, y, z) = (xy + 2yz − 3xz, xyz + x − y − 1) for x, y, z ∈ R. Find the differential DF at
(x, y, z) = (1, 1, 1), and determine whether it is possible to represent the set S = {(x, y, z) | F (x, y, z) =
(0, 0)} as a smooth curve parametrized by z, i.e. whether it is possible to solve for x, y in terms of z, near
the point (x, y, z) = (1, 1, 1).

Solution: Direct computation gives that DF |(1,1,1) =

(
y − 3z x + 2y 2y − 3x
yz + 1 xz − 1 xy

)

(1,1,1)

=

(−2 3 −1
2 0 1

)
.

Since det

(−2 3
2 0

)
= −6 6= 0, S can be represented as a smooth curve, parametrized by z, near the point

(x, y, z) = (1, 1, 1) by the Implicit Function Theorem.

3. (a) (10 points) Let F : R3 → R3 be defined by F (x, y, z) = (x + y − z, x − y + z, x2 + y2 + z2 − 2yz).
Determine the rank of DF on R3 and determine whether the image set F (R3) is locally a smooth
surface or a smooth curve.

Solution: Direct computation gives DF =




1 1 −1
1 −1 1
2x 2y − 2z 2z − 2y


 .

Since det

(
1 1
1 −1

)
= −2 6= 0 and




−1
1

2z − 2y


 = −




1
−1

2y − 2z


 , DF has constant rank 2 on R3, and

the set F (R3) is locally a smooth surface.

(b) (10 points) Let F : R3 → R3 be defined by F (x, y, z) = (xy+z, x2y2 +2xyz +z2, 2−xy−z). Determine
the rank of DF on R3 and determine whether the image set F (R3) is locally a smooth surface or a
smooth curve.

Solution: Direct computation gives that DF =




y x 1
2y(xy + z) 2x(xy + z) 2(xy + z)

−y −x −1


 .

Since
(
2y(xy + z), 2x(xy + z), 2(xy + z)

)
= 2(xy + z)

(
y, x, 1

)
and

(− y,−x,−1
)

= −(
y, x, 1

)
, DF has

constant rank 1 on R3, and the set F (R3) is locally a smooth curve.

4. Let f : R3 → R2 be defined by f(x, y, z) = (x + y + z, x − y − 2xz), so that f(0, 0, 0) = (0, 0) and

Df(0, 0, 0) =

(
1 1 1
1 −1 0

)
.
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(a) (10 points) Show that we can solve for (x, y) = g(z), i.e. solve for x, y in terms of z,

Solution: In Df(0, 0, 0), since det

(
1 1
1 −1

)
= −2 6= 0, we can solve for (x, y) = g(z), by the Implicit

Function Theorem, i.e. we can solve for x, y in terms of z.

(b) (10 points) Show that Dg(0) =

(−1
2

−1
2

)
.

Solution: By differentiating the components of f with respect to z, we get

fx
∂x
∂z

+ fy
∂y
∂z

+ fz|at (0,0,0) =

(
1
1

)
∂x
∂z

+

(
1
−1

)
∂y
∂z

+

(
1
0

)
=

(
0
0

)

which is equivalent to that

(
1 1
1 −1

) (
∂x
∂z
∂y
∂z

)
=

(−1
0

)
⇒ Dg(0) =

(
∂x
∂z
∂y
∂z

)

at z=0

= −1
2

(−1 −1
−1 1

)(−1
0

)
=

(−1
2

−1
2

)

5. (a) (6 points) Let f : R→ R be defined by f(x) = x
1
3 . For each c > 0, prove that f is Lipschitz on [c,∞).

Solution: For any x, y ∈ [c,∞), by the Mean Value Theorem, we have
|f(x)− f(y)| = |f ′(z)(x− y)| = | 1

3z2/3 (x− y)| for some point z lying between x, y ∈ [c,∞)
⇒ |f(x)− f(y)| = | 1

3z2/3 (x− y)| ≤ 1
3c2/3 |x− y| holds for any x, y ∈ [c,∞).

This proves that f is Lipschitz on [c,∞).

(b) (6 points) Let f : R→ R be defined by f(x) = x2. Prove that f is Not Lipschitz on [1,∞).

Solution: For any x, y ∈ [1,∞), by the Mean Value Theorem, we have
|f(x)− f(y)| = |2z(x− y)| for some point z lying between x and y.
By letting x and y go to ∞, we note that z will go to ∞.
Thus,there does not exist a fixed number A such that |f(x)−f(y)| ≤ A|x−y| holds for all x, y ∈ [1,∞).
Hence, f is not Lipschitz on [1,∞).

(c) (6 points) Let f, g be Lipschitz maps defined on D ⊂ Rp with ranges in Rq. Prove that f +g is Lipschitz
on D.

Solution: Since f, g are Lipschitz on D, there exist constant A, B ≥ 0 such that
‖f(x)− f(y)‖ ≤ A‖x− y‖ and ‖g(x)− g(y)‖ ≤ B‖x− y‖ hold for any x, y ∈ D.
This implies that ‖(f + g)(x)− (f + g)(y)| ≤ ‖f(x)− f(y)‖+ ‖g(x)− g(y)‖ ≤ (A + B)‖x− y‖
holds for any x, y ∈ D.
Hence, f + g is Lipschitz on D.

(d) (6 points) Give an example of Lipschitz functions f, g : [1,∞) → R and that the product fg is Not
Lipschitz on [1,∞).

Solution: Let f(x) = g(x) = x for each x ∈ [1,∞). Then, f and g are Lipschitz (with LIpschitz
constant 1), but (fg)(x) = x2 is not Lipschitz by part (b).

6. (a) (8 points) Let {fn} be a sequence of functions defined by fn(x) = x
n

for each x ∈ R. Show, without
using Arzelà-Ascoli’s theorem, that fn converges uniformly on any closed interval [a, b] ⊂ R while the
convergence in Not uniform on R.

Solution: For each x ∈ R, we have lim
n→∞

fn(x) = lim
n→∞

x
n

= 0 = f(x),

and lim
n→∞

sup
[a,b]

|fn(x)− f(x)| = lim
n→∞

sup
[a,b]

|x|
n

= lim
n→∞

max{ |a|
n

, |b|
n
} = 0.

Hence, fn converges uniformly on any closed interval [a, b] ⊂ R.
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Now, since lim
n→∞

sup
R
|fn(x) − f(x)| = lim

n→∞
sup
R

|x|
n
≥ lim

n→∞
|n|
n

= 1 6= 0, the convergence is not uniform

on R.

(b) (8 points) Let fn be defined on the interval [0, 1] by the formula

fn(x) =

{
0, if x ∈ [0, 1− 1

n
],

nx− (n− 1), if x ∈ [1− 1
n
, 1].

Show that lim
n→∞

fn(x) exists on [0, 1], and, without using Arzelà-Ascoli’s theorem, show that this con-

vergence is Not uniform on [0, 1].

Solution: For each x ∈ [0, 1), we have x ∈ [0, 1− 1
n
) if n > 1

1−x
.

This implies that fn(x) = 0 for all n > 1
1−x

and for all x ∈ [0, 1).
Thus, we have lim

n→∞
fn(x) = 0 for each x ∈ [0, 1).

At x = 1, since fn(1) = 1 for all n ∈ N, we have lim
n→∞

fn(1) = 1.

Hence, we have lim
n→∞

fn(x) = f(x) =

{
0 if x ∈ [0, 1)

1 if x = 1
,

and, since lim
n→∞

sup
[0,1]

|fn(x)− f(x)| = lim
n→∞

sup
[0,1)

(
nx− (n− 1)

)
= lim

n→∞
1 = 1 6= 0,

the convergence is not uniform on [0, 1].

7. Let F = {fn(x) = xn

n
| x ∈ [0, 1], n = 1, 2, . . .}.

(a) (4 points) Show that F is uniformly bounded on [0, 1].

Solution: Since |fn(x)| ≤ 1
n
≤ 1, for each fn ∈ F and for each x ∈ [0, 1], the set F is uniformly

bounded on [0, 1].

(b) (8 points) Show, without using the arzelà-Ascoli’s theorem, that F is uniformly equicontinuous on
[0, 1].

Solution: For each fn ∈ F and for each x ∈ (0, 1), since |f ′n(x)| = |x|n−1 ≤ 1, by the Mean Value
Theorem, we have (∗) · · · |fn(x)− fn(y)| ≤ 1 · |x− y| for any x, y ∈ [0, 1] and for all n ∈ N.
This implies that F is uniformly equicontinuous on [0, 1].
(For each ε > 0, we choose δ = ε such that if x, y ∈ [0, 1] and |x − y| < δ, then the inequality (∗)
implies that |fn(x)− fn(y)| < |x− y| < δ = ε for each fn ∈ F .)

8. (12 points) Let {fn} be a sequence of continuous functions with domain D ⊂ Rp and range in Rq and let
this sequence converge uniformly on D to a function f. Prove that f is continuous on D.

Solution: Given ε > 0, since fn converges uniformly to f on D, there exists an M ∈ N such that
‖fn(x)− f(x)‖ < ε

3
for each x ∈ D.

At any point x ∈ D, since fM is continuous at x, there exists a δ > 0 such that if y ∈ D and ‖x− y‖ < δ
then ‖fM(x)− fM(y)‖ < ε

3
.

Thus, we have
‖f(x)− f(y)‖ = ‖f(x)− fM(x) + fM(x)− fM(y) + fM(y)− f(y)‖
≤ ‖f(x)− fM(x)‖+ ‖fM(x)− fM(y)‖+ ‖fM(y)− f(y)‖ < ε

3
+ ε

3
+ ε

3
= ε.

This implies that f is continuous at x.
Since x is an arbitrarily chosen point from D, f is continuous on D.
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